1 2 3 4 5 6
| import pandas as pd import matplotlib.pyplot as plt
df = pd.read_csv('datasets/avocado.csv')
df.head()
|


1
| df['AveragePrice'].head()
|
0 1.33
1 1.35
2 0.93
3 1.08
4 1.28
Name: AveragePrice, dtype: float64
0 1.33
1 1.35
2 0.93
3 1.08
4 1.28
Name: AveragePrice, dtype: float64
1 2
| albany_df = df[df['region'] == 'Albany'] albany_df.head()
|

Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8,
9,
...
17603, 17604, 17605, 17606, 17607, 17608, 17609, 17610, 17611,
17612],
dtype='int64', length=338)
1 2
| albany_df = albany_df.set_index('Date') albany_df.head()
|

Index(['2015-12-27', '2015-12-20', '2015-12-13', '2015-12-06', '2015-11-29',
'2015-11-22', '2015-11-15', '2015-11-08', '2015-11-01', '2015-10-25',
...
'2018-03-11', '2018-03-04', '2018-02-25', '2018-02-18', '2018-02-11',
'2018-02-04', '2018-01-28', '2018-01-21', '2018-01-14', '2018-01-07'],
dtype='object', name='Date', length=338)
<matplotlib.axes._subplots.AxesSubplot at 0x15c18c71e88>

1
| albany_df['AveragePrice'].plot()
|
<matplotlib.axes._subplots.AxesSubplot at 0x15c18ad00c8>
