tensorflow 2.0开发:手写数字识别(一)

据说tensorflow 2.0版本集成了keras风格的api,貌似对程序员更友好;本文参考官方文档编写测试程序,采用tensoeflow 2.0构建深度学习模型,编写手写数字识别程序

手写数字数据集大概是这样的,

下面是程序代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# 安装 TensorFlow

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

print(type(x_train))

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# model.summary()

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test, verbose=2)

坚持原创技术分享,您的支持是我前进的动力!