本文根据官网资料,采用tensorflow 2.0,构建服饰款式识别的深度学习模型,数据集大概是这样的:
程序代码如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images/255.0
test_images = test_images/255.0
# plt.imshow(train_images[7],cmap=plt.cm.binary)
# plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.summary()
model.fit(train_images, train_labels, epochs=10)
# test_loss, test_acc = model.evaluate(test_images, test_labels)
#
# print('\nTest accuracy:', test_acc)
predictions = model.predict(test_images)
# print(predictions)
# print(predictions[0])
# print(class_names[np.argmax(predictions[0])])
for i in range(5):
plt.grid(False)
plt.imshow(test_images[i], cmap=plt.cm.binary)
plt.xlabel("Actual:"+class_names[test_labels[i]])
plt.title("Prediction:"+class_names[np.argmax(predictions[i])])
plt.show()