1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
| import tensorflow as tf from tensorflow import keras
import numpy as np import matplotlib.pyplot as plt
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images/255.0 test_images = test_images/255.0
model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
model.fit(train_images, train_labels, epochs=10)
predictions = model.predict(test_images)
for i in range(5): plt.grid(False) plt.imshow(test_images[i], cmap=plt.cm.binary) plt.xlabel("Actual:"+class_names[test_labels[i]]) plt.title("Prediction:"+class_names[np.argmax(predictions[i])]) plt.show()
|